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Fig. 1. Approximations of medial axis of the Elephant (a) using the voxel-based method of [Jalba et al. 2016] (noted as JST) (b), the sampling-based method
of [Amenta and Kolluri 2001] (as implemented in SAT [Miklos et al. 2010]) (c), and our method at two different voxelization resolutions (d,e). Topological
numbers including the Euler characteristic (“Euler”) and number of connected components (“CC”) are noted for methods other than JST. Our method requires
significantly less resources than JST, which is unable to handle resolutions higher than 512

3 for this input, and produces visually comparable results to SAT but
without its topological errors (as evident in the incorrect Euler characteristic).

We present a novel algorithm for computing the medial axes of 3D shapes.

We make the observation that the medial axis of a voxel shape can be simply

yet faithfully approximated by the interior Voronoi diagram of the boundary

vertices, which we call the voxel core. We further show that voxel cores can

approximate the medial axes of any smooth shape with homotopy equiv-

alence and geometric convergence. These insights motivate an algorithm

that is simple, efficient, numerically stable, and equipped with theoretical

guarantees. Compared with existing voxel-based methods, our method in-

herits their simplicity but is more scalable and can process significantly

larger inputs. Compared with sampling-based methods that offer similar

theoretical guarantees, our method produces visually comparable results

but more robustly captures the topology of the input shape.
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1 INTRODUCTION
The medial axis [Blum 1967] is a fundamental geometric structure

in computer graphics and computer vision. The medial axisM of

a shape O is simply defined as the set of points in O with two or

more nearest neighbors on the boundary of O (see a more formal

definition in Section 3.1). The usefulness of the medial axis arises

from its many topological and geometric properties. Topologically,

M is thin (i.e., at least one dimension thinner than O) and homotopy

equivalent to O. Geometrically, M is centered in O and captures

the protrusions and components of O. As a result, medial axes have

been used in approximating, simplifying, and analyzing shapes.

They have also become the foundation for other skeletal shape

descriptors [Tagliasacchi et al. 2016].

While simply defined, the medial axis is notoriously difficult

to compute. In 3D, the medial axes of most common shapes are

complex networks of curved sheets. While methods that compute

such networks precisely exist [Culver et al. 2004], they are limited to

rather simple shapes due to the high computational cost. To be able

to handle complex, real-world data, most existing methods resort

to approximations. The goal of approximation is therefore to retain

as many properties (both topologically and geometrically) of the

medial axis as possible while being able to scale to large inputs.
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Existing approximation methods of 3D medial axes mostly fall

into two categories, each hitting a different balance among scal-

ability, robustness, and theoretical soundness (see Section 2 for a

detailed review):

• Voxel-based methods operate on a shape represented by a

union of voxels. Such shapes may directly come from the

input (e.g., segmented MRI or CT scans) or can be converted

from a boundary representation (e.g., by voxelization). Voxel-

based methods are generally easy to implement and numeri-

cally robust. However, they need to store and process a large

number of voxels interior to the shape, which is expensive

in both time and memory (Figure 1 (b)). Furthermore, there

is no theoretical guarantee when it comes to approximating

the medial axis of non-voxel (e.g., smooth) shapes.

• Sampling-based methods consider point samples on the shape

boundary and are often based on the Voronoi diagram of

these samples. As the samples are taken on the boundary

(as opposed to interior voxels), these methods are more scal-

able than voxel-based methods. While these methods can

be equipped with strong theoretical guarantees when the

shape boundary is smooth (e.g.,C2
), they often involve highly

non-trivial geometric computations (e.g., multiple passes of

Voronoi computations and geometric intersections) that are

numerically sensitive, which can lead to numerous topologi-

cal errors on the resulting approximations (Figure 1 (c)).

In this work, we present a new method for approximating the

medial axes of 3D shapes that is simple, efficient, numerically robust,

and equipped with theoretical guarantees for both voxel and smooth

shapes. Our method rests on two novel insights on voxel shapes.

First, we show that the medial axis of a voxel shape can be well

approximated, both topologically and geometrically, by the interior

Voronoi diagram of boundary vertices. We call this approximation

the voxel core. Second, we show that the voxel core can provide a

topologically correct and geometrically convergent approximation

of the medial axis of any smooth (C2
) shape given a voxelization of

the shape at sufficiently high resolutions.

These observations lead to a simple approximation method that

can be applied to both voxel shapes (natively) and boundary repre-

sentations (via voxelization). Compared with current voxel-based

methods, our method is more scalable, because its complexity scales

with only the number of boundary voxels, and is additionally equipped

with convergence guarantees for smooth shapes. Compared with

existing sampling-based methods that share similar theoretical war-

ranties, our method is not only simpler to implement but is also

numerically robust, since the only non-trivial computation is com-

puting the Voronoi diagram of points with integer coordinates.

1.1 Contributions
Wemake several theoretical and practical contributions in this work.

First, we show that the interior Voronoi diagram of voxel shapes

(the voxel core) keeps all essential properties of the medial axis:

it is thin (at most two-dimensional), enclosed in and homotopy

equivalent to the voxel shape, and less than one voxel away from

the medial axis of the voxel shape. This result contrasts the well-

known fact that the Voronoi diagram of points samples of a smooth

3D shape is not a converging approximation of the shape’s medial

axis [Amenta et al. 2001].

Second, we show that the voxel core is a theoretically sound

approximation of medial axes of smooth (C2
) shapes when used

in conjunction with voxelization. Our work draws upon results

from two bodies of literature, one on the geometric and topological

properties of digitizations [Lachaud and Thibert 2016; Stelldinger

et al. 2007] and one on medial axis approximation with noisy point

samples [Chazal and Lieutier 2005, 2008]. Specifically, we give con-

ditions on voxel sizes under which the voxel core preserves the

homotopy of the smooth shape, and we show that an arbitrarily

large subset of the voxel core converges onto the medial axis of the

smooth shape as the voxel size tends to zero.

Third, and practically, we present an efficient and robust algo-

rithm for computing 3Dmedial axes. The scalability of the algorithm

allows it to handle much larger voxel shapes (e.g., 1024
3
and above)

than existing voxel-based methods, making it suitable for process-

ing high-resolution biomedical imaging data. When given other

boundary representations (e.g., meshes), the results of our method

are visually comparable to existing sampling-based methods but

free of topologically errors caused by numerical sensitivity. Fur-

thermore, even though our method considers a “noisy” sampling of

the smooth shape, we observe that it requires fewer samples, and

hence is more efficient, than existing sampling-based methods for

capturing fine topological details (e.g., a narrow connection). The

algorithm is also simple to implement; most of the computations

are done using existing packages (e.g., for voxelization and Voronoi

diagram computation).

2 RELATED WORKS
We review representative works on approximating the medial axis.

As medial axes are sensitive to boundary perturbations, a closely

related problem is identifying stable and significant parts of the

medial axis (known as regularization), and we refer readers to recent

works [Li et al. 2015; Miklos et al. 2010; Yan et al. 2016] for reviews.

Note that many regularization methods work by pruning noisy

branches of the medial axis [Li et al. 2015; Yan et al. 2016], which

requires an initial approximation of the medial axis. We refer readers

to excellent survey materials [Siddiqi and Pizer 2008; Tagliasacchi

et al. 2016] for more extensive discussions on medial axes, skeletal

shape descriptors and other medial representations.

2.1 Algebraic methods
These methods attempt to create an accurate, analytic representa-

tion of the medial axis from a given boundary representation, such

as polyhedra [Culver et al. 2004; Milenkovic 1993; Sherbrooke et al.

1996], CSG [Hoffmann 1990], and free-form surfaces [Musuvathy

et al. 2011; Ramanathan and Gurumoorthy 2010]. They usually work

by tracing the features of the medial axes (e.g., seams and junctions)

from the shape boundary inward. Due to the need to solve (often

degenerate) systems of non-linear functions, implementing these

methods in a numerically robust way is both algorithmically chal-

lenging and computationally expensive, which limits the application

of these methods to small inputs (e.g., meshes with hundreds of poly-

gons).
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2.2 Voxel-based methods
These methods take a voxel shape and identify a subset of the voxels

that share similar properties as the medial axis, such as being thin,

centered, and preserving both the shape’s topology and shape com-

ponents [Saha et al. 2016; Sobiecki et al. 2014]. The restriction to a

finite set of voxels lends simplicity and robustness to these methods.

In particular, preserving the topology can be easily achieved by a

thinning process that strips away layers of voxels while keeping

those voxels that are critical for retaining topology [Bertrand and

Malandain 1994; Saha and Chaudhuri 1994].

Many voxel-based methods are guided by a non-Euclidean dis-

tance metric that can be locally evaluated, such as Manhattan dis-

tance [Palágyi and Kuba 1999; Tsao and Fu 1981], chamfer distance

[Pudney 1998], and <3,4,5> distance [Arcelli et al. 2011]. While effi-

cient to evaluate, these metrics are dependent on the orientation of

the voxel grid, making the results sensitive to affine transformations

of the shape. More accurate and transformation-invariant results

can be obtained by computing the Euclidean distance field [Arcelli

and di Baja 1993; Ge and Fitzpatrick 1996; Hesselink and Roerdink

2008; Rumpf and Telea 2002], the derived gradient field [Siddiqi et al.

2002], or more global shape information [Jalba et al. 2016; Reniers

et al. 2008]. However, computing these metrics increases both the

running time and memory storage per voxel. In general, the com-

plexity of any voxel-based method is linear to the total number of

voxels, which is cubic to the resolution of the voxel grid. In practice,

we have noticed that such complexity makes current methods in-

feasible for processing volumes with resolutions of 1024
3
or above,

which are not uncommon in practice (e.g., voxelization of highly

complex models with fine geometric features, or high-resolution

biomedical data).

Voxels can also serve as a spatial partitioning structure to ac-

celerate algebraic methods. Such methods search for features of

the medial axis within each voxel [Foskey et al. 2003; Lee and Lee

1997], subdividing when necessary [Etzion and Rappoport 2002;

Stolpner and Siddiqi 2006; Sud et al. 2006]. While these methods are

more efficient than the algebraic methods mentioned above, their

computational cost remains high since it scales with the product of

the number of boundary elements and the number of voxels.

Voxel-based methods are often used to approximate the medial

axis of non-voxel shapes (e.g., meshes) via voxelization. However,

a theoretical understanding of the quality of such approximation

is still missing. In particular, it is not clear what voxel resolution is

required (or whether such resolution exists) so that the voxel-based

medial axis preserves the topology of the shape, or how close the

voxel-based approximation is to the true medial axis of the shape as

a function of the voxel resolution.

2.3 Sampling-based methods
These methods place point samples on or around the shape’s bound-

ary and consider either a subset of the Voronoi diagram of these

samples or some derivative structures. The use of boundary samples,

as opposed to interior voxels, make these methods more efficient and

scalable than voxel-based methods. The main challenge is offering

assurance of the quality of the resulting approximation, particularly

its proximity to the medial axis and topology. Note that, for 2D

smooth shapes, the subset of Voronoi diagram of boundary samples

interior to the shape already provides topological and geometri-

cally converging approximation to the medial axis [Brandt and

Algazi 1992]. However, this simple approximation does not work

for smooth 3D shapes, due to existence of “sliver” tetrahedra in

Delaunay triangulation of boundary samples, which lead to Voronoi

vertices close to the boundary but far away from the medial axis

[Amenta et al. 2001].

Existing 3D sampling-based methods offer different levels of guar-

antees on their approximations, and stronger guarantees generally

imply more complex and numerically fragile implementations. Ma

et al. [2012] and Jalba et al. [2013] locate points of maximal balls

given normals at the sample points. However, they do not provide

any error analysis of their approximation nor any guarantees on

topology.

Attali and Montanvert [1996] and Dey and Zhao [Dey and Zhao

2003] consider a subset of the Voronoi diagram of the samples that

satisfy an angle criteria. The subset is shown to converge geometri-

cally to the medial axis of a smooth shape as the sampling density

increases [Dey and Zhao 2003], but no assurance is provided on

whether the subset preserves the topology of the medial axis (our

experiments found that this subset tends to have many holes and

isolated components).

Giesen et al. [Giesen et al. 2006] show that the unstable manifold

of the Voronoi diagram has the same topology as the smooth shape at

sufficiently high sampling density, and thismanifold can be extended

to include the angle-filtered subset in [Dey and Zhao 2003] to achieve

bounded approximation of the medial axis. However, computing the

unstable manifold is a numerically challenging task, and existing

implementations [Cazals et al. 2008] are extremely time consuming

(taking hours for over 50k points).

Amenta et al. [Amenta et al. 2001] considers “poles” of Voronoi

diagram and show that the power shape of these poles converge

both geometrically and topologically to the medial axis of a smooth

shape as the sampling density increases. However, the power shape

is not always thin, and in practice it contains a large number of

rather flat tetrahedra. A thin and topology-preserving approxima-

tion can be obtained by replacing the power shape with the medial

axis of the union of the polar balls [Amenta and Kolluri 2001; Tam

and Heidrich 2003]. While theoretically sound, such approximation

requires multiple passes of Voronoi computations as well as geomet-

ric intersections, which are difficult to implement in a numerically

robust manner. We know of only one implementation [Miklos et al.

2010], which we found to routinely produce topological errors (e.g.,

duplicate elements and closed “pockets”; see Figure 1).

Comparing with these methods, our method for approximating

the medial axis of smooth shapes is equipped with equally strong

theoretical guarantees (in both topology and proximity) but is sim-

pler to implement and numerically robust. Our theoretical analysis

builds on the results of Chazal and Lieutier [2005; 2008], who showed

that a subset of the Voronoi diagram of a sufficiently close and dense

noisy sampling retains the topology of the shape and converges to

the medial axis geometrically (see more detailed discussion in Sec-

tion 3.1). In the context of their work, our contribution is presenting

sampling conditions in terms of the voxel size that are necessary
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for our particular approximation (voxel core) to achieve homotopy

equivalence and geometric convergence.

3 THEORY
In this section, we present our theoretical results on approximating

the medial axes of voxel shapes and smooth shapes. These results

motivate and guide our algorithm design in the next section. After

reviewing a few key concepts (Section 3.1), we will introduce voxel

cores and show that they are excellent surrogates of the medial axes

of voxel shapes (Section 3.2). We next show that the voxel cores are

also good approximations of the medial axes of smooth shapes via

voxelization (Section 3.3).

While the results are presented for voxel shapes in 3D, we have

verified that similar results hold for “pixel shapes” in 2D as well.

We do not present the 2D results here, but will use 2D examples for

illustrating the concepts. Due to space limit, we only present here

selected proofs; the remaining proofs and supporting lemmas are

included in the Supplementary Materials.

3.1 Preliminaries
Medial axis: Consider a bounded open set O of Rn . The medial

axis M is the set of points of O that are closest to two or more

points on the boundary of O, or ∂O (see insert for an illustration).

More precisely, for any x ∈ O, let Γ(x) be the set of its closest points
on the boundary,

Γ(x) = {y ∈ ∂O | d(x ,y) = d(x , ∂O)}

where d is the Euclidean distance. The medial axis is defined as

M = {x ∈ O | |Γ(x)| ≥ 2}

The medial axis of an n-dimensional set is generally a (n − 1)-

dimensional structure. For n = 3, M is made up of 2-dimensional

manifolds glued at non-

manifold curves (called seams)

and points (called junc-

tions). Since each point of

M is equidistant to at least

two locations on the bound-

ary, M is centered within

the shape and captures lo-

cal symmetries. The medial axis has also been shown to be homotopy
equivalent to the open set O [Lieutier 2003], which means that the

two structures have the same set of topological features, such as

holes, tunnels, and connected components.

Hausdorff distance and λ-medial axis: To measure the distance

between two compact sets A,B, we use the symmetric Hausdorff

distance dH defined as

dH (A,B) = max(sup
x ∈A

d(x ,B), sup
x ∈B

d(x ,A))

Chazal and Lieutier [2005] show that, even though the medial axis

is highly sensitive to boundary perturbations, a subset of the medial

axis enjoys certain stability properties when the perturbation is

bounded by the Hausdorff distance. In particular, they define the

λ-medial axis, Mλ , as consisting of points x ∈ M such that the

smallest enclosing ball of the nearest boundary point set Γ(x) has a

radius of λ or greater. They showed that, for two open sets O,O′

whose Hausdorff distance is ϵ , the λ-medial axis of one set is within

a bounded distance from the medial axis of the other set, for suf-

ficiently large values of λ. We will build on their results to show

the geometric convergence of our approximation for medial axes of

smooth shapes.

Voronoi diagram and Delaunay triangulation: Our method is

based on these two classical geometric structures. We briefly review

their definition and key properties, and refer to standard textbooks

in computational geometry for thorough discussions. Given a finite

set of points P in Rn , the Voronoi cell of a point p ∈ P consists of

all points in Rn whose distance to p is no greater than to any other

point of P . The Voronoi diagram of P , VD(P), consists of points in
Rn that are closest to two or more points of P . Points inVD(P) form
(closed) elements at different dimensions d = 0, . . . ,n, which we

call Voronoi vertices, edges and faces for d = 0, 1, 2.

The Delaunay triangulation, denoted by DT (P), is another com-

plexwith a dual structure to the Voronoi diagram. Eachd-dimensional

Voronoi element e is dual to a (n−d)-dimensional Delaunay element

ẽ , defined as the convex hull of points in P whose Voronoi cell have

e on its boundary. The vertices of ẽ lie on an n-dimensional empty
ball that is centered on the Voronoi element e and does not contain

any other point of P in its interior. When all points P are in gen-

eral position (i.e., no 4 co-circular points, or 5 co-spherical points,

etc.), the Delaunay triangulation is a simplicial complex. That is,

each d-dimensional Delaunay element is the convex hull of exactly

(d + 1) points. However, when P assume integer coordinates (e.g.,

voxel vertices), their positions are longer general, and DT (P) may

consist of non-simplicial elements such as 2-dimensional polygons

and 3-dimensional polyhedra.

3.2 The voxel core
We consider the tiling of R3 by cubes of equal sizes, each called a

voxel. The boundary elements of a voxel are called the voxel vertices,

edges and faces. A voxel shape is the interior of the union of a finite

set of voxels. By this definition, a voxel shape is an open set that
does not include the vertices, edges, or faces on the boundary of the

union. Note that the voxel shape may have a different topology from

the union of voxels. In the 2D example of Figure 2 (a), the union of

the voxels encloses a cavity that is disconnected from the outside,

but such cavity does not exist in the voxel shape. As we shall see,

considering the open set as the voxel shape is critical for establishing

the topological equivalence with our medial axis approximation.

Note that a voxel shape is consistent with 6-connectivity in digital

topology [Klette and Rosenfeld 2004].

3.2.1 Definition. To motivate our definition of the voxel core,

we start with the following key observation of a voxel shape. Given

a voxel shape O, we denote by B the set of vertices, edges, and faces

on the boundary ∂O, and by P the vertices in B.

Theorem 3.1. The boundary set B is a subset of the elements in the
Delaunay triangulation DT (P).

Proof. It suffices to show that each boundary element e ∈ B
has an empty ball. We only need to consider the case where e is an
edge or face as we are in R3. In either case, we construct the ball
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Fig. 2. Illustration of voxel core in 2D. (a) A voxel shape O with boundary
set B (thick outline) and boundary vertices P (dots). (b) The Delaunay
triangulation DT (P ) (red edges and pink cells) and Voronoi diagramVD(P )
(blue). (c) Subset of DT (P ) intersecting O and their dual Voronoi elements,
which make up the voxel core C (blue).

as the smallest circumscribing sphere of e , which is centered at the

midpoint of the edge or the centroid of the face. The ball is empty

because 1) all vertices of e are on the ball, and 2) no other vertices

in P are closer to the ball center than the vertices of e (see Lemma

1.1 in Supplementary Materials).
1 □

Note that his property does not hold if B is a general 3D polyhe-

dron: not every edge and face of a polyhedron is contained in the

Delaunay triangulation of the polyhedron’s vertices. In the simple

2D example in Figure 2 (a,b), one observes that the boundary set B
(thick outline in (a)) is contained in DT (P) (red and pink in (b)).

As a result of Theorem 3.1, the boundary set B partitions the

remainder of the Delaunay triangulation into two subsets, one subset

making up the closure of O and the other subset making up the

complement of O. The voxel core is defined by the dual Voronoi

elements of the first subset (Figure 2 (c)):

Definition 3.2. The voxel core, C, of a voxel shape O with bound-

ary vertices P is the subset of the Voronoi elements whose dual

Delaunay elements in DT (P) have non-empty intersections with O.

3.2.2 Properties. While simply defined, the voxel core C inherits

several key properties of the medial axisM of the voxel shape O: it

is thin (i.e., void of 3-dimensional cells), homotopy equivalent to O

(i.e., sharing the same set of holes, tunnels, and components), and

completely enclosed within O. In addition, C is less than a voxel

away from M. These properties are detailed next.

Thinness: The thinness of the voxel core is a direct consequence
of its duality with Delaunay triangulation. Note that all vertices of

DT (P) lie on the boundary ∂O. Since C is dual to elements of DT (P)
that intersect O, no element of C is dual to a 0-dimensional vertex.

As a result,

Theorem 3.3. C has no 3-dimensional cells.

The voxel core is usually a 2-dimensional complex, but it may

also contain edges that are not shared by any faces (e.g., when O is

1
We have in fact shown that B is a subset of the Gabriel graph of P , which is in turn a

subset of DT (P ).

Fig. 3. Voxel core in 2D (blue) after increasing levels of voxel subdivision.
Observe that it converges to the medial axis (green) of the voxel shape.

a one-voxel thick tube) or even isolated vertices (e.g., when O is a

single voxel).

Homotopy equivalence: The duality also allows us to relate the

topology of the voxel core with that of the voxel shape:

Theorem 3.4. C is homotopy equivalent to O.

The proof, given in the Supplementary Materials, is based on the

nerve theorem [Björner et al. 1985], which establishes the topological

equivalence between a cell complex and its dual. Note that the voxel

core preserves the topology of the open set but not its closure (the

union of voxels). Back to the example of Figure 2, the voxel core

C (blue line in (c)) is a simply connected graph, whereas the union

of voxels forms a loop that disconnects the complement into two

components.

Proximity: We show that the voxel core C is close to the medial

axisM by bounding the Hausdorff distance between the two sets.

Let h be the length of a voxel edge (which we will refer to as the

voxel size). We can show that:

Theorem 3.5. dH (C,M) ≤

√
3

2
h. More specifically,

(1) For any x ∈ C, d(x ,M) ≤ 1

4
h.

(2) For any x ∈ M, d(x ,C) ≤
√
3

2
h.

The proof is given in the Supplementary Materials. The proof

proceeds by moving a point from C (resp. M) in a well-chosen

direction so that it can not travel for more than a certain distance

before hittingM (resp. C).

The distance bound leads to a simple method, by voxel subdi-

vision, for computing a converging approximation to the medial

axis of a voxel shape. Consider a new voxel shape O′
created by

subdividing each voxel in O into k × k × k voxels of size h/k . Since
O′

covers the same open set as O, the two voxel shapes share the

same medial axis M. On the other hand, the Hausdorff distance

between the voxel core C′
of O′

and M is reduced to (
√
3/2k)h.

Figures 3,4 demonstrate the effect of voxel subdivision on the voxel

core in 2D and 3D.

Enclosure: Finally, we show that the voxel core, just like themedial

axis, lies completely inside the shape. As we shall see, this property

also leads to an simple way to check if a Voronoi element is in the

voxel core (which we call the in-core check).
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Fig. 4. Voxel core (middle and bottom rows) of a 3D voxel shape after in-
creasing levels of voxel subdivision (showing only first two levels in top row).
Observe that it converges to the medial axis (green) of the voxel shape.

We first make another observation of the boundary set B. In

particular, the Voronoi elements dual to B, denoted by B̃, are the
only Voronoi elements that intersect the boundary B:

Lemma 3.6. An element e ∈ VD(P) has a non-empty intersection
with B if and only if e ∈ B̃.

Proof. We first show sufficiency. Consider an element e ∈ B̃, and
let ẽ be its dual Delaunay element (note that ẽ ∈ B). If ẽ is a vertex,
it is contained in e . If ẽ is an edge, the argument in the proof of

Theorem 3.1 shows that the midpoint of ẽ is the center of an empty

ball for ẽ , and hence the midpoint lies on e . Similarly, if ẽ is a face,
its centroid lies on e . In each case, e has a non-empty intersection

with B. To show necessity, consider an element e ∈ VD(P) that
intersects B at point x . Let f be the lowest-dimension element of

B that contains x . The vertices in P closest to x must be vertices of

f (see Lemma 1.1 in Supplementary Materials). Hence e is dual to
either f or a boundary element of f . Since f and all of its boundary

elements are in the boundary set B, we have e ∈ B̃. □

This observation allows us to prove the enclosure property:

Theorem 3.7. C ⊂ O.

Proof. By Theorem 3.4, each connected component of O is cap-

tured by a connected component of C. Since C and B̃ have no

elements in common, by Lemma 3.6, C does not intersect B. Hence,
for a component of O, say O1, its corresponding component of C,

say C1, either lies completely inside O1 or has no intersection with

O1. To prove the theorem, it suffices to show that some element of

C1 lies in O1. Consider a face f on the boundary of O1. f bounds

two Delaunay cells, one of which is in O1, which we denote by t .

The dual Voronoi edge of f , f̃ , has two vertices, one of which is

due to t , or t̃ . Since t is inside O1, t̃ is in C1. On the other hand, by

Lemma 3.6 and the argument therein, the Voronoi edge f̃ intersects

f but no other faces on the boundary of O1. Hence t̃ lies inside O1,

and so is the entirety of C1. □

By the argument in the proof of Theorem 3.7, the dual Voronoi

element of a face in B is an edge with precisely one vertex in O.

Since every element in B̃ contains some Voronoi edge, it follows

that all elements of B̃ are “mixed”, meaning they have vertices both

inside and outside O. As the vertex core C is disjoint from B̃ and lies

inside O, we conclude that C is precisely the subset ofVD(P)whose
vertices lie completely inside O. This conclusion leads to a simple

way to perform the in-core check: a Voronoi element of VD(P) is in
the voxel core C if and only if its vertices lie in the voxel shape O.
Combining the statement above and Theorem 3.7 (and the argu-

ment in the proof), we conclude our discussion of the voxel core by

showing three equivalent definitions of the voxel core:

Corollary 3.8. The following three sets are identical to the voxel
core C:

(1) Elements of VD(P) that are dual to elements of DT (P) that
intersect O.

(2) Elements of VD(P) that lie completely in O.
(3) Elements of VD(P) whose vertices lie in O.

3.3 Approximating medial axes of smooth shapes
We next consider approximating the medial axis of a smooth shape

by the voxel core of a voxelization of the shape.We consider a smooth
shape O as an open set in R3 that is bounded by a C2

continuous

manifold surface B with a positive reach r . The reach [Chazal and

Lieutier 2008] is defined as the shortest distance between any point

on B to the medial axis of either O or its complement (equivalent to

the minimum local feature size [Amenta et al. 2001; Dey and Zhao

2003]). Given a voxel partition of space with voxel size h, we define
the voxelization of O as the voxel shape Oh made up all those voxels

whose centers lie in O. Such voxelization is also known as the Gauss
digitization [Lachaud and Thibert 2016]. We denote by Bh , Ph the

boundary elements and boundary vertices of Oh . See Figure 5 for

an illustration.

Fig. 5. Notations for voxelization: the smooth shape O with boundary B
(left), and voxelization Oh (made up of voxels of size h whose centers are in
O) and its boundary set Bh .

3.3.1 Properties of voxelixation. To help establish properties of

our approximation, we first present some results that relate the

geometry and topology of a voxelization to the smooth shape. These

results are variants of, and derived from, existing results in literature

[Lachaud and Thibert 2016; Stelldinger et al. 2007].
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We first show that the voxelization approximates the smooth

shape with bounded Hausdorff distance. Lachaud and Thibert [2016]

show that, for voxel sizes smaller than (2
√
3/3)r , the Hausdorff

distance between the two boundaries, Bh and B, is bounded by

(
√
3/2)h. We build on their result to bound two pairs of geometric

structures, which are needed for our analysis of the voxel core: one

pair being the boundary vertices Ph of the voxel shape and the

smooth surface B, and the other pair being the two shapes Oh and

O (see proof in Supplementary Materials):

Theorem 3.9. For any h < 2

√
3

3
r ,

(1) dH (Ph ,B) ≤
√
2+

√
3

2
h, and

(2) dH (Oh ,O) ≤

√
3

2
h.

In addition to being geometrically close to the smooth shape, the

voxelization also captures the topology of the shape. Stelldinger et al.

[2007] showed that, again for any voxel sizes smaller than (2
√
3/3)r ,

several variants of the union of voxels (but not the union itself) are

all homeomorphic to the original shape O. Building on their result,

we show that the voxel shape Oh enjoys a similar property (see

proof in Supplementary Materials):

Theorem 3.10. For any h < 2

√
3

3
r , Oh is homotopy equivalent to

O.

3.3.2 Properties of medial axes approximation. Building on the

results above, we can show that the voxel core of a voxelization

of a smooth shape is a converging approximation, both topologi-

cally and geometrically, of the medial axis of the smooth shape. We

denote by Ch the voxel core of the voxelization Oh at voxel size

h. Since Ch is homotopy equivalent to Oh (Theorem 3.4), which is

in turn homotopy equivalent to O for sufficiently small voxel sizes

(Theorem 3.10), it immediately follows that:

Theorem 3.11. The voxel core Ch of the voxelization of a smooth

shape O with reach r is homotopy equivalent to O for any h < 2

√
3

3
r .

Chazal and Lieutier [2008] have previously considered the general

problem of approximating the medial axis of a smooth shape by a

subset of the Voronoi diagram of a set of noisy samples. To achieve

homotopy equivalence, they require that the Hausdorff distance

between the noisy samples and the surface to be less than r/8, which
yields a much denser sampling than the voxel vertices Ph satisfying

h < (2
√
3/3)r . We attribute our generous sampling condition for

recovering topology to the regularity of our samples (being voxel

vertices).

To bound the distance between the voxel core Ch and the medial

axisM, we apply the results by Chazal and Lieutier [2005] on the

approximation of the medial axis by the Voronoi diagram of a noisy

sample. They define an ϵ-noisy sample of a surface B as a finite

point set P whose Hausdorff distance with B is less than ϵ . They
consider the λ-subset of VD(P), denoted by VDλ(P), whose nearest
points in P cannot be fit in a sphere of radius λ. They show that

VDλ(P) converges onto the λ-medial axisMλ as ϵ decreases to zero
([Chazal and Lieutier 2005], Theorem 5). We use this result to show

that the λ-subset of the voxel core Ch , denoted by Ch,λ , converges

onto the λ-medial axis as the voxel size h decreases to zero. Here,

Ch,λ consists of all points on Ch whose nearest voxel vertices on

the boundary cannot fit in a sphere of radius λ.

Theorem 3.12. For any λ > 0 such that the mappingM(λ) =Mλ
is continuous at λ2, and any sequence {hn } such that limn→∞ hn = 0,

lim

n→∞
dH (Chn,λ ,Mλ) = 0

Proof. By Theorem 3.9 (1), for sufficiently small values of hn
(< (2

√
3/3)r ), the sequence Phn as n → ∞ is a sequence of ϵ-noisy

samples of B with decreasing ϵ . To apply the result of Chazal and

Lieutier [2005], we need to show that Chn,λ coincides with the λ-
subset of the Voronoi diagram of Phn , denoted by VDλ(Phn ), that
lies inside the smooth shape O. Note that Chn,λ is the subset of

VDλ(Phn ) that lies inside the voxelization Ohn . Hence it suffices

to show that there is no point x ∈ VDλ(Phn ) that lies either (i) in
O but not in Ohn , or (ii) in Ohn but not in O. We will prove this

statement by contradiction for any λ > ((
√
2 + 2

√
3)/2)hn .

In the case of (i), by Theorem 3.9 (2), there exists a point y on

the voxelization boundary Bhn such that d(x ,y) < (
√
3/2)hn . On

the other hand, any point on Bhn is no greater than (
√
2/2)hn away

from a vertex in Phn . Hence the distance between x and its nearest

points in Phn is at most (
√
2/2 +

√
3/2)hn < λ, meaning that these

nearest points can fit in a sphere (centered at x ) of radius less than λ.
This contradicts the assumption that x is in the λ-subset VDλ(Phn ).

Similarly, in the case of (ii), by Theorem 3.9 (2), there exists a point

y on the smooth boundary B such that d(x ,y) < (
√
3/2)hn . On the

other hand, by Theorem 3.9 (1), there exists some point Phn that is

less than ((
√
2+

√
3)/2)hn away from y. Hence the distance between

x and its nearest points in Phn is at most ((
√
2 + 2

√
3)/2)hn < λ,

leading to the same contradiction as above. □

Note that the λ-medial axisMλ is an increasingly larger subset of

M as λ decreases, and it becomesM when λ = 0. Hence, by picking

an arbitrarily small λ, Theorem 3.12 ensures that the voxel core con-

verges onto an arbitrarily large subset of the medial axis. In practice,

however, we have observed that smaller values of λ lead to slower

convergence, as it requires smaller voxel sizes (and hence higher

computational cost) to remove noisy components of the voxel core.

On the other hand, while larger λ are more effective in removing

noise without requiring an excessively high voxel resolution, the

resulting approximation may miss important features on the medial

axis (e.g., near thin parts of O). Hence the choice of λ controls the

trade-off in practice between computational cost and approximation

quality. We will demonstrate this trade-off by examples in Section 5.

4 ALGORITHM
The theoretical observations motivate a simple algorithm for approx-

imating the medial axes of both voxel shapes and smooth shapes

(see Figure 6):

Step 1: Voxelization If the input is a smooth shape, voxelize

the shape at a user-specified voxel size h. By our definition

2
Chazal and Lieutier [2005] show that this requirement is not overly restrictive: for

a smooth shape O, M(λ) is continuous at almost all λ except for a finite number of

values.
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Fig. 6. Algorithm flow: given a non-voxel shape (a), we first voxelize it (b),
then extract the voxel core (c, parts with higher radius measure are more
opaque and red), and finally prune it to its λ-subset (d).

(Section 3.3), a voxel belongs to the voxelization if its center

lies in the input shape.

Step 2: Extracting voxel core Given a voxel shape O, com-

pute the Voronoi diagram of the boundary vertices P , and
keep only those Voronoi elements whose vertices lie in O. By

Corollary 3.8, these elements make up the voxel core C.

Step 3: λ pruning For each element e in C, compute the radius

of the smallest circumscribing sphere of e’s nearest points
in P . Given a user-specified λ, remove elements in C whose

radius value is lower than λ while maintaining the topology

of C (see Implementation details below).

If the input is a voxel shape, observations in Section 3.2 ensure

that Step 2 computes a thin, enclosed, topologically correct and

geometrically close approximation of the medial axis. However, such

a medial axis is often highly complex, containing many spurious

sheets due to the irregularity on the shape boundary (Figure 6 (c)).

Performing Step 3 produces a cleaner subset that are more useful for

downstream applications, while the result remains thin, enclosed,

and topologically correct.

For smooth input shapes, observations in Section 3.3 guarantee

that our algorithm (Steps 1 through 3) produce a medial axis approx-

imation that is thin, homotopy equivalent to the shape (for small

enough h), and convergent to the λ-medial axis (as h increases).

Compared with existing sampling-based algorithms, our algorithm

involves only standard geometric operations, such as voxelization

and computing a Voronoi diagram, which can be robustly imple-

mented using off-the-shelf packages (see details below).

Implementation details. For a smooth surface represented as a

polyhedral mesh, we perform voxelization using Polymender [Ju

2004]. The tool is very efficient, tolerates mesh defects (e.g., holes

and self-intersections), and produces a compact octree represen-

tation that can reach high effective voxel resolutions (e.g., 4096
3
).

In Step 2, we obtain the Voronoi diagram as the dual of the Delau-

nay triangulation of the boundary vertices P , which we compute

by Tetgen [Si 2015]. To maximize robustness, all points of P are

given integer coordinates. As there are many instances of 5 or more

co-spherical vertices, which result in co-incidental Voronoi vertices,

we merge all such vertices in a post-process. In Step 3, we adopt

the topology-preserving contraction approach of [Liu et al. 2010],

which is designed for any cell complex. We define a simple pair as
a pair of elements e, f such that e lies on the boundary of f and

not on the boundary of any other element. We repeatedly remove

a simple pair from the voxel core until no more simple pairs with

radius values lower than λ can be found.

Complexity analysis. The complexity of voxelization using Poly-

mender depends on the depth of the octree d , the number of input

mesh facesm, and the number of boundary vertices |P | on the out-

put voxel shape. The process takes O(d(m + |P |)) time and O(|P |)
memory. While the complexity of the Voronoi diagram in 3D can

be quadratic in the worst case, it has been shown to be linear for

well-distributed points on a surface [Attali and Boissonnat 2004].

In our experiments, we have observed a near-linear complexity for

computing the Voronoi diagrams of the voxel boundary points P .
As the complexity of the remainder of Steps 2 and 3 is proportional

to the size of the Voronoi diagram, these two steps of our algorithm

have the complexity of O(|P |).

5 RESULTS
We evaluate our method on different types of inputs, including voxel

shapes, smooth shapes, and meshes, and compare with existing

medial axis approximation methods. All experiments are conducted

on a workstation with 3.47GHz CPU and 24GB memory.

5.1 Voxel shapes
To evaluate the scalability of our algorithm, we first conduct a

synthetic experiment that feeds the algorithm with voxelizations

of a smooth shape at increasing resolutions (Figure 7). We picked

a set of smooth shapes (Ellipsoid, Mug, Elk, Hand, and Fertility)

with a diverse range of shape, topology, and space occupancy. Each

shape is voxelized at resolutions n3 where n ranges from 128 to 1280

with an increment of 128. Assuming each shape is scaled to fit in

a unit box, we use λ = 0.015 for Elk (to capture its thin “ear”) and

λ = 0.025 for all other shapes.

Observe from the plots that both running time and memory usage

of our method scale linearly with the number of boundary vertices

|P | (the horizontal axis). Our method can efficiently handle high res-

olutions, finishing in minutes and using less than 10GB of memory

even at the resolution of 1280
3
. Note that a significant portion of

the running time is spent on computing the Voronoi diagram (using

Tetgen).

We compare with two state-of-the-art voxel-based methods, the

Hamilton-Jacobi skeleton (HJ) [Siddiqi et al. 2002] and the recent
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Fig. 7. Performance of our method (VC), the Tetgen component of our method, HJ [Siddiqi et al. 2002] and JST [Jalba et al. 2016] on voxelizations of 5 shapes
(shown on top) at increasing voxel resolutions from 128

3 to 1280
3. The horizontal axis is the number of boundary vertices of the voxelization. The plots for HJ

and JST end where the implementations ran out of memory or crashed.

work of Jalba et al. (JST) [2016], both of which utilize the Euclidean

distance transforms. As seen in the plots in the same figure, both

methods exhibit super-linear growth in memory and running time,

which significantly limits their capability in handling high resolu-

tions. In particular, HJ quickly exhausts the memory (usually before

reaching the resolution of 640
3
), while JST crashes at or before

reaching 768
3
for every test example.

The scalability of our method makes it suitable for processing

biomedical data that often has high resolutions. An example is

shown in Figure 8, where the input is a CT scan of a 4-week old

corn root at the resolution of 1560 × 789 × 1041. Our method is able

to compute the medial axis approximation in less than a minute

and using 1.5GB of memory (λ = 0.0025). As an application, we

show the curve skeletons computed from our approximated medial

axis using a recent method [Yan et al. 2016] (Figure 8 bottom). This

method takes in an initial medial axis and extracts a curve subset

guided by a measure computed on the medial axis. Observe that the

curve skeleton reveals the branching structure of the root, which is

particularly useful for plant biologists to understand the root system

architecture.

5.2 Smooth shapes
Wefirst evaluate the effect of voxel resolution and parameter λ on the
approximation result (Figure 9). We use an Ellipsoid shape (Figure 7

top-left) for which the ground truth medial axis can be computed for

comparison (its boundary is indicated by a red outline). As promised

by our analysis (Section 3.4), for any value of λ, our approximation

converges to a subset of the medial axis as the voxel resolution

increases. Larger values of λ allow faster convergence, resulting

in cleaner approximations even at low voxel resolutions, but the

converged results cover smaller portions of the medial axis (see the

gap between the outline of the medial axis and our approximation at

λ = 0.085). As a result, the choice of voxel resolution (or voxel size

h) and λ controls the trade-off between computational efficiency

and approximation quality. In particular, a large λ coupled with a

low resolution allows fast computation but may miss portions of the

medial axis where the radius measure is low. On the other hand, a

small λ coupled with a high resolution gives accurate approximation

of the medial axis but at a higher computational cost.

Nextwe compare ourmethodwith three state-of-the-art sampling-

based methods whose implementations are available: the Voronoi

pruning method of Dey and Zhao (DZ) [2003], the power crust (PC)

[Amenta et al. 2001], and the union-of-ball method [Amenta and

Kolluri 2001] (we use the implementation in the Scale Axis Trans-

form (SAT) [Miklos et al. 2010] by setting the scale parameter to

s = 1.0). We use the default sampling distance in SAT, which is

0.01, and feed the same set of samples to all three sampling-based

methods. The results are shown in Figure 10, together with perfor-

mance statistics and topological numbers of the results (e.g., Euler

characteristics and number of connected components).

Observe that our method can produce approximations that are

visually similar to these sampling-based methods, but often at the

cost of more time and memory. Although both our method and

sampling-based methods rely on Voronoi diagrams, the former uses

samples (voxel vertices) that are generally off the surface while the

latter sample directly on the surface. Therefore, to achieve similar

proximity to the medial axis, our method generally requires more

samples, which leads to higher computational cost.

The key advantage of our method is its robustness in capturing

the topology. Observe from Figure 10 that the Voronoi pruning

method (DZ) generates numerous isolated components. The power

crust (PC) produces a large number of duplicated triangles as well
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Fig. 8. A high-resolution CT scan of a corn root (top), medial axis computed
by our method (middle), and a curve skeleton produced by [Yan et al. 2016]
from our medial axis (bottom, color indicates thickness of shape around
each curve skeleton point).

as closed “pockets” (triangles forming closed cavities), resulting

in extremely high Euler characteristics. While the union-of-ball

method is theoretically guaranteed to be topologically correct, the

implementation (SAT) produces many closed pockets as well, as evi-

dent in the incorrect Euler characteristics. We have found that these

topological errors do not go away as the sampling rate increases. In

contrast, our method captures the correct topology of these shapes

for any voxel resolution at or beyond 256
3
.

Although the topological artifacts produced by sampling-based

methods are often tiny and hard to see, they can be detrimental for

downstream operations on the medial axis. One of such operations

is computing simplified skeletal descriptors, such as a curve skele-

ton or a surface skeleton [Tagliasacchi et al. 2016]. Algorithms for

computing skeletons often work by pruning a given medial axis

while preserving its topology. Topological errors on the medial axis,

no matter how small, can prevent these algorithms from being able

to fully simplify the medial axis. We compare in Figure 11 the skele-

tons computed by two recent skeletonization algorithms [Li et al.

2015; Yan et al. 2016] on two sets of medial axes, ones produced by

SAT and containing topological errors, and ones produced by our

Fig. 9. Approximating the medial axis of an Ellipsoid at increasing voxeliza-
tion resolution (left ro right) and λ (top to bottom). The first row shows the
un-pruned voxel core colored by radius measure (higher radii are more red
and opaque). Red outlines mark the boundary of the true medial axis.

method with the correct topology. Observe that the skeletons com-

puted from the SAT medial axes contain many noisy branches. At

the end of each such branch lies a “pocket” in the input medial axis,

which cannot be removed without causing a topological change.

Besides producing topological artifacts, another drawback of ex-

isting implementations of sampling-basedmethods is that they often

need an excessive number of samples to capture thin features on

the shape. For example, to reproduce the thin connections on the

“tanglecube” shape in Figure 12 (a), SAT needs nearly half a million

sample points, and the computation takes more than ten minutes

(Figure 12 (b,c)). In contrast, our method preserves these connec-

tions at voxel resolutions as low as 256
3
(λ = 0.03) (Figure 12 (d)).

Increasing the resolution to 512
3
produces a much better geometric

approximation to the medial axis that is comparable with SAT, but

with the correct topology and a shorter computing time (just over a

minute). Our advantage in efficiency in this example owes to the

generous sampling condition for achieving topology preservation

(Theorem 3.11).

5.3 Meshes
Even though theoretical guarantees are given only for voxel and

smooth shapes, our method can process any boundary representa-

tions (e.g., meshes). We show several examples in Figure 13 com-

puted at voxel resolution 1024
3
(λ = 0.025 for all these examples).
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Fig. 10. Comparing our method (VC) at resolutions 2563, 5123, 7683 and
three sampling-based methods, SAT [Amenta and Kolluri 2001; Miklos et al.
2010], PC [Amenta et al. 2001], and DZ [Dey and Zhao 2003] on several
smooth shapes. Running time (in seconds) and memory usage (in MB) are
reported for each method, as well as the Euler characteristic and number of
connected components (incorrect numbers are marked red).

Even at this high resolution (which exceeds the capability of voxel-

based methods such as HJ and JST), our program finishes in under 3

minutes and uses less than 5GB memory for each shape. In all these

examples, we found that the results faithfully capture the topology

of these shapes.

Fig. 11. Comparing skeletons computed by ET [Yan et al. 2016] (two skele-
tons are shown with different parameter settings) and QMAT [Li et al. 2015]
using input medial axes given by SAT [Miklos et al. 2010] and our method
(VC). The noisy branches in the skeletons computed from the SAT medial
axes are due to the presence of tiny pockets in the medial axes.

The scalability of our method allows it to run at very high voxel

resolutions. Coupled with a smaller value λ, we can afford to com-

pute accurate approximations of the medial axis even for complex

shapes. As shown in Figure 14, running our method at the resolution

of 2048
3
creates more detailed and smoother medial axis for the

Neptune model.

6 CONCLUSION AND DISCUSSION
In this paper, we present a novel algorithm for computing the medial

axes of 3D shapes that is simple, scalable, numerically robust, and

provably correct (for voxel and smooth shapes). The algorithm is

based on the observations that the medial axis of a voxel can be

well approximated by the interior Voronoi diagram of the boundary

vertices (the voxel core), and that the voxel cores converge to the

medial axis of any smooth shape under increasing resolutions of

voxelization. We present experimental evidence that our method is

more scalable than existing voxel-based methods while being a more

robust alternative to existing sampling-based methods. The code

and data are available online at https://yajieyan.github.io/project/

voxelcore/.

Limitation and future work. There are a number of limitations

of our work and avenues for future research. First, although our

method is more robust than sampling-based methods in terms of

topology, achieving a comparable geometric accuracy as sampling-

based methods requires our method to work with fine voxel reso-

lutions and hence incurring higher computational cost. It would

be interesting to explore means to improve the geometry of our

approximation without increasing voxel resolution, for example by

a geometric deformation towards the medial axis. Second, while

our method can handle much larger voxel volumes than existing
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Fig. 12. Comparing SAT [Miklos et al. 2010] and our method (VC) on a shape with thin connections (the shape is not aligned with the coordinate axes) (a). At
a typical sampling rate (b), SAT misses the thin connections (highlighted). To capture the connections, SAT requires a high sampling rate and computational
cost (c), but at the same time produces topological artifacts such as holes (highlighted). Our method captures the correct topology of the input shape using
voxel resolutions as low as 2563 (d,e), using much less memory and time than SAT.

Fig. 13. Approximating the medial axes of meshes (at voxel resolution 1024
3).

voxel-based methods, its linear growth of computational cost makes

it challenging to handle even larger volumes. Such data could come

from high-resolution biomedical imaging or voxelizing shapes that

contain extremely thin features (e.g., wires and sheets). To come

up with a truly scalable method, a promising idea is to replace

uniform-sized voxels on a regular grid with non-uniform voxels

on an adaptive octree grid, so that the size of the voxels adapts to

the scale of local features. Extending this work to the non-uniform

setting opens up many interesting questions, both in theory and

algorithms. Lastly, we are interested in investigating extension of

our theoretical results to higher dimensions.
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