
Erosion Thickness on Medial Axes of 3D Shapes

(Supplementary Proofs)

1 Properties of ET in 3D

1.1 Remark on infimum

We first make a note on the use of infimum instead of minimum in Equation 4 of the paper. This is because
BT may only exist in the limit. An example is shown in Figure 1, where M is made up of a horizontal
sheet and a vertical, cylindrical sheet close to the horizontal sheet’s boundary. The two sheets meet at a
non-manifold seam with a circular shape (dotted curve). The shortest exposing tree at a point x located
behind the cylinder would be a single path γ to the boundary that lies infinitely close to a portion of the
seam (red). Note that γ cannot exactly lie on the seam, or otherwise it would need to spawn paths onto the
cylinder (as required by an exposing tree), whose lengths would be much longer. The infimum allows us to
capture the length of γ as if it follows the seam.

Figure 1: An example where BT is only realized at the limit.

1.2 Finiteness

Proposition 1.1. ET (x) = ∞ if and only if x ∈ MC where MC is the maximal closed subcomplex of M .

Proof. Consider an exposing tree and traversing a path from its root. If the root is in MC , then each time
the path reaches the singular set at least one of its children must remain on MC . If the path always remains
in MC it will have infinite combinatorial complexity which is not possible in an exposing tree. Hence points
in MC do not have exposing trees, and by definition they have infinite burn time and erosion thickness.

For points not in MC we will build exposing trees with finite length showing that both burn time and
erosion thickness are finite. Consider the components of M2 that are not in MC . We can order them as
C1, . . . , Ck such that ∂(MC∪Ck∪Ck−1∪· · ·∪Ci) ⊂ ∂M ∪Ci−1∪· · ·∪C1. Let Xi = MC∪Ck∪Ck−1∪· · ·∪Ci

and define Xk+1 = MC . Let Yi = Xi −Xi+1, which we will refer to as a skirt. In principle, this allows us to
remove components of the manifold region that meet the boundary one at a time until MC is obtained.

We will build exposing trees inductively. At any point in Y1, there is a finite length path to ∂M that
does not meet the singular set and such a path is an exposing tree. Assume every point in Y1 ∪ · · · ∪ Yi−1

has a finite length exposing tree. Now consider a point in x ∈ Yi. If x ∈ ∂Xi then an exposing set of sectors
of x lie on one or more skirts in Y1 ∪ · · · ∪ Yi−1. We can build an exposing tree for x by combining paths on
each sector to some interior points of these skirts with exposing trees at those points. Exposing trees can

1



be built at a point x on the interior of Xi in two steps. First, take a path from x to some point on ∂Xi

and combine it with the exposing tree at that point. Next, consider an arbitrary exposing set of sectors of
x on M , say E. If E′ = E \Xi is not empty, sectors in E′ must lie on one or more skirts in Y1 ∪ · · · ∪ Yi−1.
We combine paths on each sector of E′ from x to some interior points of these skirts with exposing trees at
those points. This shows that every point in Yi has an exposing tree and hence finite burn time and erosion
thickness.

1.3 Continuity

Proposition 1.2. 1. ET is continuous and 2-Lipschitz over M2 \MC .

2. Consider a singular point x ∈ Ms \ (∂M ∪MC). ET over the union M2 ∪ {x} is

(a) Upper-semicontinuous at x.

(b) Continuous and 2-Lipschitz at x within some 2-dimensional disk D ⊆ M that contains x in its
interior.

To prove these properties, we first present a lemma that bounds the variation of the radius function R.
In the following, let dA(x, y) be the infimum of length over all paths restricted to a set A between two points
x, y ∈ A.

Lemma 1.3. Given any two distinct points x, y ∈ M , R(x) ≤ R(y) + dM (x, y). If x, y ∈ M, the inequality
becomes strict.

Proof. Suppose on the contrary that R(x) > R(y)+dM (x, y). Since dM (x, y) is no smaller than the Euclidean
distance between x, y, this implies that the ball centered at y with radius R(y) lies in the interior of the ball
centered at x with radius R(x). Since the ball at x is contained in the closure of S, this contradicts the fact
that y has at least one nearest neighbor on ∂S whose distance from y is R(y). If x, y ∈ M, the equality
cannot happen, since y needs to have at least two nearest neighbors on ∂S.

Proof. (Proposition 1.2) Let A = M2 \MC . We prove each property in order.

1: Consider two points x, y ∈ A. Since A is not closed, we cannot guarantee that a shortest path between
x and y exists; however, we can find one that is arbitrarily close. For any ε > 0, there is a path γ on A
from x to y such that its length satisfies |γ| < dA(x, y) + ε. By the definition of BT, there also exists
an exposing tree Γ at y such that L(Γ) < BT (y) + ε. An exposing tree at x can be formed by gluing γ
to the root of Γ. This shows that BT (x) ≤ |γ|+ L(Γ) < BT (y) + dA(x, y) + 2ε. Limiting ε to 0 yields
BT (x) ≤ BT (y)+ dA(x, y). Combining Lemma 1.3, noting dM (x, y) ≤ dA(x, y), and switching roles of
x and y, we arrive at the following condition:

ET (y)− 2dA(x, y) ≤ ET (x) ≤ ET (y) + 2dA(x, y).

In other words, the 1-Lipschitz properties of BT and R show that ET is 2-Lipschitz. Note that the
Lipschitz condition also implies continuity of ET over A.

2(a): Following the same argument, we have the one-sided Lipschitz condition ET (y)− 2dA(x, y) ≤ ET (x)
for any x ∈ Ms \ (∂M ∪MC) and y ∈ A. This implies upper-semicontinuity.

2(b): We first choose a suitable disk D. In the burning analogy, this is the last remaining neighborhood
of x right before x is burned away. To precisely define D, we consider exposing trees at x that are
compact in certain ways.

An exposing tree Γ at x is called minimal if there is no subtree of Γ also rooted at x that is an exposing
tree for x. In other words, the sectors containing the root edges is a smallest exposing set. We are
further interested in those minimal trees that have few, long subtrees. More formally, define the height
of an root edge, e, which connects x to a subtree Γe, as h(e) = |e|+ L(Γe) where |e| is the length of e.
The root edge e is said to be tall if h(e) ≥ BT (x). Note that any tree Γ has at least one tall root edge.
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Now, consider an minimal exposing tree at x, denoted as Γx, with the fewest tall root edges among
all exposing trees at x. Denote its root edges as {e1, . . . , ek} ordered in ascending heights. Let C be
the set of all sectors at x, and {c1, . . . , ck} ⊆ C those sectors containing the root edges. We claim that
the remainder after moving the first k − 1 sectors, C ′ = C \ {c1, . . . , ck−1}, contains a unique set of
sectors that forms a disk D. Otherwise, either ek can be removed from Γx (if C ′ contains no disk),
which implies that Γx is not minimal, or Γx is not an exposing tree (if C ′ contains multiple disks).

We next show that ET is 2-Lipschitz at x within D. Consider any point y ∈ D∩M2. Note that one side
of the condition is already provided by our argument above for property 2(a). To show the other side,
we follow an argument similar to that for property 1. For any ε > 0, there is a path γ on A connecting
x to y and an exposing tree Γy at y such that |γ|+ L(Γy) < BT (y) + dA(x, y) + 2ε. Construct a new
tree Γ′ from Γx by replacing the root edge ek (and its subtree) with γ and Γy. It is easy to see that
Γ′ is an exposing tree as well. Since Γx has the fewest tall root edges and ek is tall, the replacement
of ek in Γ′, γ, has to be tall as well. This yields BT (x) ≤ h(γ) < BT (y) + dA(x, y) + 2ε. Limiting ε to
zero, and combining Lemma 1.3 yields ET (x) ≤ ET (y) + 2dA(x, y).

1.4 Local minima

Proposition 1.4. For any x ∈M\ (∂M ∪MC) and any 2-dimensional disk D ⊆M that contains x in its
interior, there is some y ∈ D such that ET (y) < ET (x).

Proof. The basic idea is to look for some y along the boundary ∂D that is burned before x. Define ε =
miny∈∂D(R(y) + dD(x, y)−R(x)). By Lemma 1.3, ε is strictly positive. There exists an exposing tree Γ at
x such that L(Γ) < BT (x) + ε. Starting from x, we trace along a path in Γ that stays on D until it hits ∂D
at a point y. Such tracing is always possible, because at least one child edge at any vertex of Γ on D has to
stay on D, and a path only ends on the boundary of M . Let Γy be the subtree of Γ rooted at y, we have:

BT (y) ≤ L(Γy) definition of BT (1)
≤ L(Γ)− dΓ(x, y) definition of tree length (2)
< BT (x) + ε− dΓ(x, y) choice of Γ (3)
≤ BT (x) + ε− dD(x, y) path on Γ from x to y lies on D (4)
≤ BT (x) + ε− (R(x) + ε−R(y)) definition of ε (5)
= BT (x)−R(x) + R(y) (6)

2 Error bound of graph-restricted ET

Proposition 2.1. [Proposition 6.2 in paper] Let |M | count the number of triangles in M , g be the maximal
gradient magnitude of R on any triangle edge on ∂M , and ω be the maximal distance between adjacent nodes
in G on a triangle edge. For any node v in G,

ET (v) ≤ ETG(v) ≤ ET (v) + (2|M |+ g)ω (7)

We first introduce a piece-wise representation for an exposing tree Γ on M rooted at some triangle vertex
or a point on some triangle edge. Assume that each vertex of Γ is either at a triangle vertex or on a triangle
edge (otherwise it will be on M2 and hence can be treated as an interior point to some edge of Γ). An edge
e of Γ can be partitioned into a sequence of curve segments, such that each segment, c, lies interior to a
triangle or on a triangle edge and that the end points of c lie on a triangle edge or at a triangle vertex. We
call each such segment a chord.
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To prove the error bound, we first show that Γ can be approximated by some exposing tree restricted to
graph G, which is no longer than Γ plus a quantity proportional to the maximal number of chords along any
root-to-leaf path in Γ (Lemma 2.2). Next we show that, if Γ is short, it has a bounded number of chords
along any of its root-to-leaf path (Lemma 2.3).

Lemma 2.2. Consider a node v of G. For any exposing tree Γ at v over M , there is some exposing tree Γ′

at v restricted to G such that
L(Γ′) ≤ L(Γ) + (2K + g)ω (8)

where K is the maximum number of chords along any root-to-leaf path of Γ.

Proof. We first construct a graph G+ from G by adding, for each triangle, arcs between every pair of non-
adjacent nodes along a triangle edge. That is, the subgraph of G+ on each triangle is a complete graph
of its vertices and edge samples. We call the additional arcs jump-arcs, as they jump over some edge-arcs
connecting adjacent nodes. See Figure 2 for an illustration.

Figure 2: G+ adds additional jump-arcs (green) to G that connect non-adjacent nodes on a triangle edge.

We can transform any exposing tree Γ+ at v restricted to G+ to some exposing tree restricted to G
with the same length. Specifically, if Γ+ does not contain any skip-arcs, no change is needed. Otherwise,
consider a skip-arc a in Γ+. Let the triangle edge containing a be e, and let the subtree of a in Γ+ be Γ+

a .
If e ∈ M2 (shared by one or two triangles), we simply replace a by the edge-arcs jumped over by a on any
triangle sharing e. Note that the replacement arcs remain on M2 and hence the result is still an exposing
tree. Otherwise, if e is non-manifold (shared by more than two triangles), consider the set E of edge-arcs
jumped over by a on all triangles sharing e. These edge-arcs can form an image of a tree, denoted by ΓE ,
where every root-to-leaf path in the tree is represented by a sequence of edge-arcs in E. We replace a in Γ+

by ΓE and glue one copy of Γ+
a to each leaf of ΓE . We can verify that the modification also results in an

exposing tree with the same length as Γ+.
Next, given an arbitrary exposing tree Γ over M rooted at node v, we construct an exposing tree Γ+

restricted to G+ by replacing each chord of Γ with some arc in G+. For each chord c with end points p1, p2,
it is replaced by an arc a connecting nodes n1, n2 as follows:

• If pi(i = 1, 2) is at a triangle vertex, ni will be that vertex. Otherwise, ni is the nearest node to pi on
the interior of the triangle edge containing pi (this is always possible, because our graph construction
in Section 6.1 ensures that each triangle edge has at least one interior node).

• If n1, n2 lie on different edges of a triangle, a is the unique triangle-arc on that triangle connecting
n1, n2 (Figure 3 left and middle). Otherwise, n1, n2 lie on a same triangle edge, say e, and the graph
G+ has multiple edge-arcs (or jump-arcs) connecting them, one for each triangle sharing e. If c lies
interior to one triangle, a is the edge-arc (or jump-arc) on that triangle (Figure 3 right). Otherwise c
lies on e, we arbitrarily pick one triangle sharing e and set a to be the edge-arc (or jump-arc) on that
triangle connecting n1, n2.

Our choice of nodes ni ensures that arcs constructed for consecutive chords in Γ are connected. It can be
further verified that Γ+ forms an exposing tree at v.
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Figure 3: Example of arcs a (solid) chosen for chords c (dashed).

Finally, we will bound the difference between the length of trees Γ and Γ+. Consider each chord c in Γ
with end points p1, p2 and its corresponding arc a in Γ+ with nodes n1, n2. Since a is straight, and since the
length of both edge segments {p1, n1} and {p2, n2} are no greater than ω, the following inequality holds:

|a| ≤ |{n1, p1}|+ |c|+ |{p2, n2}| ≤ |c|+ 2ω (9)

Now consider any root-to-leaf path γ of Γ with k chords, and let its corresponding root-to-leaf path in Γ+

be γ+. Summing the inequality above over all chords of γ yields

|γ+| ≤ |γ|+ 2kω (10)

Let u be the leaf node at the end of γ, and u+ be its corresponding leaf on γ+. Since the gradient magnitude
of R over ∂M is bounded by g, we have

R(u+) ≤ R(u) + gω (11)

Combining Equations 10,11 and considering all root-to-leaf paths yields inequality

L(Γ+) ≤ L(Γ) + (2K + g)ω

Since there exists an exposing tree restricted to G that has the same length as Γ+, this concludes the
proof.

Lemma 2.3. Consider any exposing tree Γ rooted at v on M where v is either a triangle vertex or a point
on a triangle edge. There exists an exposing tree Γ′ at v such that

1. L(Γ′) ≤ L(Γ)

2. Each root-to-leaf path of Γ′ has at most one chord on any single triangle (including its edges).

Proof. Consider a root-to-leaf path γ on Γ and a triangle t such that γ has more than one chords on t (if
such γ and t do not exist, let Γ′ = Γ and we are done). Let the set of all chords on t be C. Following the
root-to-leaf direction on γ, let p be the first end of the first chord of C and q be the second end of the last
chord on C. We create a new chord, c, as the straight segment connecting p and q (see Figure 4 left). If
p, q both lie on a non-manifold triangle edge, c would lie on the triangle interior but stay infinitely close to
that edge (see Figure 4 right). We then replace the entire segment on Γ between p and q, together with any
subtrees rooted along the segment, by chord c. The result is an exposing tree that is no longer than Γ.

Note that the operation mentioned above strictly decreases the total number of chords of Γ. Hence we
can repeat the operation on Γ until such γ and triangle t cannot be found (in case that Γ has infinite number
of chords, we first apply this operation to those triangles that contain infinite number of chords).
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Figure 4: Examples of replacing multiple chords (dark and dashed) on a path γ that lie on the same triangle
by a single chord c (solid).

Proof. (Proposition 2.1) A direct corollary of Lemma 2.3 is that the maximum number of chords along any
root-to-leaf path of Γ′ is bounded by the total number of triangles on M . Combining with Lemma 2.2, there
exists some exposing tree Γ′′ restricted to G such that

L(Γ′′) ≤ L(Γ′) + (2|M |+ g)ω ≤ L(Γ) + (2|M |+ g)ω

Since the above holds for any exposing tree Γ at v, by definition of burn time, we arrive at the second
inequality in 7. The first inequality trivially holds because BTG considers a subset of exposing trees (restricted
to G).

3 Algorithms

3.1 Accuracy of Burn

Proposition 3.1. [Proposition 6.3 in paper] At the termination of algorithm Burn, v.time = BTG(v) for
every node v.

We will prove the following Lemma with a stronger assertion that, whenever a node or a sector is marked
as burned, its “time” field accurately records the time at which the fire front restricted to G burns away the
node or sector. The claim above is a direct corollary of this lemma, since the algorithm terminates with all
nodes marked as burned.

Lemma 3.2. The following holds at the end of each While loop in the algorithm Burn,

1. ∀s ∈ v.sectors, if s.burned =True, then ∀a ∈ s.arcs,

s.time ≤ a.len + BTG(va) (12)

where va denotes the end node of arc a that is not v.

2. If v.burned =True, then v.time = BTG(v).

Proof. We prove both properties by induction. Initially, they trivially hold because all nodes and their sectors
are marked as unburned. Assuming they hold for all previous loops, we prove the two properties below for
the current loop. To simplify the discussion, we drop “restricted to G” when we talk about exposing trees.

1. We only need to consider a sector s that is newly burned in the current loop (otherwise inequality 12
holds by induction hypothesis). We separately consider the case where s is the primary sector and the
case where s is exposed by the primary sector.
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• s = v.primeSec: By induction hypothesis, inequality 12 holds for all arcs a where va is marked
as burned. We only need to show, for any a ∈ s.arcs where va is not yet burned, and for any
exposing tree Γ at va, s.time ≤ a.len + L(Γ).
To do so, we perform a walk on Γ from its root va as follows. At a vertex (node) u of Γ, we follow
the child edge (arc) b that is on some un-burned sector of u. We stop if such b does not exist.
Figure 5 illustrates the notations.

Figure 5: Illustration for proof of Lemma 3.2.

We can show that, when we stop, u is either a burned node or it is on ∂G. Otherwise, suppose
u is an interior node of Γ (since u /∈ ∂G) and it is not burned. If u has not been popped from Q
before, it would have no burned sectors. Otherwise, the un-burned sectors of u would form closed
disks (or they would have been exposed and burned). In either case, some child arc of u in Γ
must lie on an unburned sector of u, and we can keep walking.
Consider the node u where we stop. If u /∈ ∂G, u must have been marked as burned and hence it
cannot be the root, va. Let c be the parent arc of u in Γ and t be the sector of the parent node
uc that contains c (see Figure 5). Note that both uc and t have not been burned (or we would
have stopped earlier in the walk). We have:

s.time = v.time s is the primary sector (13)
≤ uc.time v is at the head of Q (14)
≤ t.time uc.time is the smallest t′.time for all unburned sectors t′ (15)
≤ c.len + BTG(u) induction hypothesis, since u is burned (16)
≤ c.len + L(Γu) Γu is the subtree of Γ rooted at u (17)
≤ L(Γ) < a.len + L(Γ) (18)

The only remaining case is when u ∈ ∂G and it is not burned. This implies that u has never been
popped from Q before, which in turn implies u.time ≤ u.R. We therefore have

s.time = v.time ≤ u.time ≤ u.R ≤ L(Γ) < a.len + L(Γ)

• s 6= v.primeSec: Let t = v.primeSec. Using the same argument above, we have t.time ≤
a.len + L(Γ) for any arc a ∈ s.arcs where va is not burned and any exposing tree Γ at va. Since
we set s.time to be v.time inside the loop, and t.time = v.time, we arrive at the inequality 12.

2. We need to show, for any exposing tree Γ at v, v.time ≤ L(Γ). Consider all sectors of v that were not
burned before the current loop; denote the set as N . Note that N either contains all sectors of v (if v
has not been popped from Q before this loop) or contains closed disks. In either case, Γ must have a
root edge a on some sector s ∈ N . Denote the subtree of Γ rooted at va as Γa. Since v is burned in
this loop, all sectors in N are necessarily burned in the same loop. By inequality 12, we have

v.time = s.time ≤ a.len + BTG(va) ≤ a.len + L(Γa) ≤ L(Γ)
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3.2 Non-intersecting burn trees

A burn tree at a node v is constructed by following arcs s.primeArc (provided it is not null) on all sectors
s ∈ v.sectors back to the boundary ∂G. Here we show that no two arcs, from the same burn tree or two
different burn trees, have non-trivial intersection.

Proposition 3.3. After the algorithm Burn terminates, consider any two nodes v, u of G and any pair of
sectors s ∈ v.sectors and t ∈ u.sectors. Let a = s.primeArc and b = t.primeArc. If a 6=null, b 6=null, and
a 6= b, then a ∩ b is either empty or is a subset of end points of a and b.

Proof. It is easy to check that the only scenario where a ∩ b may contain interior points of a or b is when
both a, b are edge-arcs of G on a same triangle. See Figure 6 for two examples.

Figure 6: Two examples of intersecting arcs.

Denote the end node of a that is not v as va (and similarly ub). Due to Lemma 3.2 (1) and the definition
of primary arc, we have

a = arg min
a′∈s.arcs

(a′.len + BTG(va′)), b = arg min
b′∈t.arcs

(b′.len + BTG(ub′)) (19)

Suppose a, b intersects at a non-end point p. Without loss of generality, suppose |pub|+ BTG(ub) ≤ |pva|+
BTG(va), where |pub| is the length of the straight segment connecting p and ub (the ≥ case can be handled
in a symmetric fashion).

If there is an arc a∗ in G that connects v with ub (Figure 6 left), then by triangle inequality we have

a∗.len + BTG(ub) < |vp|+ |pub|+ BTG(ub)
≤ |vp|+ |pva|+ BTG(va)
= a.len + BTG(va)

which contradicts Equation 19. If such v and ub are not connected by any arc in G, then they necessarily
are non-adjacent nodes on the same triangle edge. Consider the augmented graph G+ as constructed in
the proof of Lemma 2.2 (see also Figure 2). There is an arc a+ in G+ that connects v and ub (Figure 6
right). Using the same argument above and noting that BTG ≡ BTG′ (as shown in the proof of Lemma
2.2), we have a+.len + BTG(ub) < a.len + BTG(va). Using the same transformation technique in the proof
of Lemma 2.2, there is an arc a∗ in G connecting v to an adjacent node va∗ on the same triangle edge such
that a∗.len + BTG(va∗) = a+.len + BTG(ub), reaching the same contradiction.

3.3 Topology of medial curves

We will show that the medial curve C extracted using our dualization technique in Section 7.1 of the paper
preserves the topology of the triangulated medial axis M . We assume that M has a generic structure. By
[Giblin and Kimia 2004], this means that each point on M has one of the five local topology as shown for
xi(i = 1, . . . , 5) in Figure 5 of the paper.
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Our approach is to construct a homotopy-preserving deformation retract from M onto C. The retract
proceeds in two stages. First, a narrow band around the burn trees is “carved out” from M . Denoting this
band as B, the second stage contracts the remainder of the first stage, M \B, onto C.

The band B is made up of infinitesimal pieces called hubs and spokes that lie respectively at the nodes
and arcs of G. For each node v of G, the hub is a regular neighborhood of v that is arbitrarily small, and
it is made up of flaps that correspond to the sectors of v. For each arc a on some burn tree, the spoke is
an arbitrarily narrow strip containing a that connects the hubs of the two end nodes of a. Figure 7 (left)
illustrates the hubs and spokes for four nodes and three arcs.

Figure 7: Left: narrow band (orange outline) made up of hubs around four nodes and spokes around three
arcs. Right: a sequence of removal of the band.

In the first stage, we retract M to M \ B following the progress of the algorithm Burn. At each While
loop where a node v is popped from Q, we remove the spoke of the primary arc of v.primeSec (if it is
not null) and the flaps of v’s hub corresponding to v.primeSec and its exposed sectors (hence the hub of
v is completely removed when v is burned). Figure 7 (right) illustrates the process where the nodes are
popped from Q in the order v1, v2, v4, v3, v4 (v4 is burned the second time it is popped). It can be shown the
removal process preserves homotopy as long as the unburned sectors of any node v forms a single connected
component at any time during the algorithm. To show the latter, note that the unburned sectors either
comprise of all sectors at v (if v has not been popped) or form closed disks. Since the sectors in each of the
five generic local topologies are connected and do not contain multiple, disjoint closed disks, the unburned
sectors of v at any time of the algorithm are connected.

In the second stage, we retract M \ B onto C. We do so with the aid of a triangulation Tt within each
triangle t of M . Specifically, for each face of the subdivision on t defined by the triangle edges and arcs in
the burn tree, we create a fan of triangles connecting the dual vertex of the face to each boundary segment
of the face. See an illustration in Figure 8 (left, middle). Note that Tt contains the segments of C in its edge
graph. There are in fact only two types of triangles in Tt: ones having a segment of C opposite to a node
of G (Figure 8 top-right), and ones having an arc of G opposite to a vertex on C (Figure 8 bottom-right).
For triangles of the first type, contraction starts from the boundary of the node’s hub and proceeds towards
the opposite edge. For the second type, contraction starts from the boundary of the arc’s spoke and the
boundary of its end nodes’ hubs and moves towards the opposite vertex. It is easy to verify that such
contraction is consistent between neighboring triangles of Tt, and that it continuously deforms the boundary
of B onto C.
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Figure 8: Left: arcs in burn trees (black) and dual medial curve (green) on a triangle t. Middle: triangulation
Tt showing retract direction within each triangle. Right: two types of triangles in Tt and the retract direction
within each.
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